RaceCapturePro Sensors

From Autosport Labs
Revision as of 06:42, 8 January 2014 by Brentp (talk | contribs) (→‎Sensors: added buy links for tps)
Jump to: navigation, search


Temperature Sensors


Mfg / Part # Image Pigtail Mechanical Notes Analog Channel Configuration
  • Wells SU109
  • SMP TX3
  • Pigtail: Pico 5615pt

SU109 C.jpg Add to cart.png


Add to cart.png

3/8" NPT threaded brass body and a 2 pin terminal. Can be used for air inlet temperature for normally aspirated engine * Using 2.2K pullup resistor
GM sensor analog calibration.png
Volts Scaled Value (Degrees F)
0.37 212.00
0.51 178.00
1.99 104.0
2.47 72.0
4.24 23.0

  • Wells SU107
  • SMP AX1
  • Pigtail: Pico 5616pt

SU107 C.jpg Add to cart.png


Add to cart.png

3/8" NPT threaded brass body and a 2 pin terminal.
  • Use for measuring air inlet temperature.
  • Exposed sensing element, necessary for boosted engines where fast response times are necessary.
  • Due to the fragility of the sensing bulb, it is necessary to pot the base of the sensor leads with sensor-safe silicone when used in high vibration environments.


AEM-30-2012 AEM-30-2012.jpg
  • 1/8" NPT
  • Plug set and pins are included with kit
AEM-30-2012 analog calibration.png
Volts Scaled Value (Degrees F)
0.40 302.00
0.87 239.00
1.88 176.0
3.2 122.0
4.72 32.0

Infrared Sensors

Mfg / Part # Image Notes
Mylexis MLX90620 Mylexis MLX90620.jpg
  • 16x4 matrix temperature sensor with I2C digital output.
  • The matrix temperature sensor with a 60 degree field of view makes it ideal for a one-sensor tire temperature solution
  • Interface module queued for development
  • Technical Information

Thermocouple Sensors

Analog Devices AD597 Type K Thermocouple amplifier Soic-8.jpg Low cost, easy to use thermocouple amplifier with 10mv/C temperature output directly from a K-Type thermocouple. Ideal for creating a simple thermocouple to 0-5v sensor.
Maxim MAX31851 Thermocouple amplifier Soic-8.jpg Versatile thermocouple amplifier with 1-wire (I2C) digital interface. Ideal for monitoring multiple sensors

Pressure Sensors

Fluid Pressure

These sensors are appropriate for measuring fluid pressures in an engine. Not appropriate for measuring manifold boost or vacuum as these are relative pressure sensors. Use an absolute pressure sensor instead.
Mfg / Part # Image Pigtail Mechanical Notes Analog Channel Configuration
AEM 30-2131-150 AEM-30-2131-150.jpg 3 pin GM connector 1/8" NPT
  • 150 PSI pressure sensor, appropriate for oil and fuel.
  • Linear response with an output between 0.5v and 4.5v
  • Technical Information
  • Default kit from AEM includes pigtail
  • Since these type of sensors have a linear output, replace the 4.5v value with the max pressure of the device in the units you prefer. e.g. 10 bar, 150 psi, etc.
  • Repeat the value through the rest of the calibration table.

150psi sensor analog calibration.png
Volts Scaled Value (PSI)
0.5 0.0
4.5 150.0
4.5 150.0
4.5 150.0
4.5 150.0

Various 10 bar 150 psi ss pressure sensor.jpg 3 pin GM connector 1/8" NPT port
  • 10 bar (145 PSI) stainless steel pressure sensor.
  • Linear response with an output between 0.5v and 4.5v
  • Other sensor ranges are possible - e.g. 10, 30, 150 bar, with a consistent linear output.

Manifold Pressure (MAP) Sensors

  • Sensor: 12223861 (GM)
  • Pigtail: 15305891 (GM) PT1035 (AC Delco)

GM 3bar map sensor.jpg Add to cart.png

GM 15305891 pigtail.jpg
  • Bracket for firewall mounting
  • vacuum port
3 bar MAP sensor
GM 3 bar map sensor analog calibration.png
Volts Manifold Pressure (KPa)
0 3.6
1.25 80.0
2.5 159
3.75 237
5.0 315.0
Freescale MXP4250AP

Freescale-Semiconductor-MPX4250AP.jpg Add to cart.png

2.5 bar MAP sensor
  • An extremely popular MAP sensor used in the Megajolt ignition and Megasquirt fuel injection systems.
  • Can be used in a simple circuit and powered by the 5v voltage reference from Race Capture

Tire Pressure

Mfg / Part # Image Notes
  • OEM TMPS System
  • Schrader TPMS receiver outputs tire pressure data on the CAN bus. would need to reverse engineer CAN bus protocol.
  • Analysis / Reverse engineering work queued

Pulse/Speed/RPM Sensors


Mfg / Part # Image Notes
Autosport Labs CoilX <image> The CoilX sensor module is designed to safely interface the noisy, high voltage RPM signal at the ignition coil pack primary into a clean signal that RaceCapture/Pro can process.

Wheel Speed / Gear speed

Hall effect speed sensors will require an external 1K pull-up resistor, connected to 5v. This can be wired up near the sensor connection for convenience.
Mfg / Part # Image Pigtail Mechanical Notes Pulse Channel Configuration
Cherry GS102301

150px Add to cart.png

  • Rugged Hall effect sensor suitable for harsh automotive environments (fuels, solvents, lubricants)
  • Operation up to 140c
  • Datasheet
  • Configure the pulse channel with the number of pulses per revolution, which maps to the number of teeth on the gear / wheel.
Cherry GS100701

Cherry GS100701 gear speed sensor.jpg Add to cart.png

  • Low profile, aluminum body, flying leads
  • Operation up to 125c
  • Datasheet

Distance Sensors

Ride Height

Mfg / Part # Image Pigtail Notes Analog Channel Configuration
Sharp GP2D12 Sensor GP2D12.jpg
  • Optical distance sensor - 10 to 80cm range
  • 3-pin connector, analog output
  • Possible uses include ride height position (pointed at ground) and pedal position
  • Datasheet

Steps to calibrate:

  1. After installation place the vehicle on a level surface.
  2. Set the Analog calibration to 0-5v simple linear scaling
  3. At rest, note the voltage of the sensor. This is the zero level.
  4. Raise and safely support the corner of the vehicle and remove the spring.
  5. Move the suspension arm to full droop. Note actual inches / mm traveled and also note the voltage logged by RaceCapture/Pro
  6. Move the suspension arm to full compression. Note actual inches / mm and also note the voltage logged by RaceCapture/Pro
  7. Create Calibration Table:
  • Place the droop voltage / distance into the 1st column of the calibration table. Make the distance negative
  • Place the 'at rest' voltage / zero distance into the 2nd column of the calibration table.
  • Place the compression voltage / distance into the 3rd column of the calibration table. Make the distance positive
  • Repeat the compression voltage / distance values for the 4th and 5th columns.
  • BMW 37140141444
  • Pigtail: 61138383300
BMW 37140141444 ride height sensor.jpg BMW 61138383300.jpg
  • 5v power supply
  • Approximately 0-5v output
  • Measures distance over 90 degrees of the arm travel.
  • Used as a ride-height sensor for BMW and Mini applications for auto-leveling headlights
Texense RHS Texense RHS Infrared Ride Height Sensor.jpg
KA Sensors RHL3 KA Sensors RHL3 Laser Ride Height Sensor.jpg
Various Mfg / String Potentiometer String Potentiometer.jpg

String Potentiometers can be used for a variety of purposes: Linear, distance, and rotation (if cable is wrapped around a shaft)

Angle / Rotation Sensors

Throttle Position (TPS)

Mfg / Part # Image Pigtail Mechanical Notes Analog Channel Configuration
Ford / SMP TH45

TPS-45.jpg Add to cart.png

5752pt.jpg Add to cart.png

Screw mounted, keyed input for throttle shaft

Common Ford style Throttle Position sensor

To calibrate, note the voltage at 0% throttle and 100% throttle and create a 2 point analog scaling map.


Temperature Sensor

Temperature sensors are passive devices that measure temperature through the use of a thermistor, a resistor that varies resistance with temperature.

We recommend using dedicated, two wire ECU-style sensor similar to the types specified in our recommended sensor list for best results.

Temp sensor connection.png

Pullup resistor

A pullup resistor is needed to create the necessary voltage divider circuit so RaceCapture/Pro's analog input can measure temperature as a varying voltage. This pullup resistor is connected to the 5v reference on the RaceCapture/Pro terminal block.

High Resistance ECU style sensors

Use a 2.2K ohm pull-up resistor for high resistance ECU style sensors, such as the temperature sensors in the supported list

Low Resistance Gauge type sensors

Low resistance gauge type sensors are not recommended. If you must use one of these types of sensors, a 1/4 watt 220 ohm pull-up resistor can be used for sensors such as VDO 323-095, 325-002 and similar.

Sensor Ground

Two wire ECU style temperature sensors have one sense lead and one ground lead. For best accuracy, connect the ground lead to the same ground point as RaceCapture/Pro.

One wire gauge type sensors have the ground as the body of the sensor. Ensure the engine is properly grounded to the chassis via multiple ground straps.

Active Sensors

Active sensors are powered devices that provide a variable voltage output related to the environment being measured- such as pressure, distance, temperature, speed, force, etc.

Active sensor connection.png

Active sensors are particularly easy to wire. Nearly all active sensors for automotive applications specify 5v power and produce an output within 0 to 5v, making them directly compatible with RaceCapture/Pro. Most active sensors have a linear output and therefore are very easy to calibrate.

Steps for connecting an active sensor

  1. Identify the power, ground and output signal wires. The sensor technical documentation will provide this information.
  2. Connect the sensor ground to the same location as the ground point for RaceCapture/Pro
  3. If the sensor is 5v powered, connect it to the 5v voltage reference on RaceCapture/Pro
  4. Connect the sensor output signal to the desired analog input port of RaceCapture/Pro

Throttle Position / Variable Resistors (Potentiometers) / Linear sensors

These type of sensors are passive devices comprising some form of a variable resistor. Examples include:

  • Throttle Position Sensors
  • Linear sensors
  • String Potentiometers
  • Single and multi-turn Potentiometers

Potentiometer Sensor Connection.png

Steps for connecting an variable resistance type sensor

  1. Consult the sensor's technical documentation for sensor connections.
  2. Connect one of the outside legs of the variable resistor to the ground point for RaceCapture/Pro
  3. Connect the opposite leg of the variable resistor to the 5v Vref of RaceCapture/Pro
  4. Connect the variable resistor wiper (typically the center lead) to the the desired analog input port of RaceCapture/Pro

During calibration, if the sensor reads backwards, flip the 5v and ground connections.

Sensor Breakout Board

We've created an optional sensor breakout / distribution board that will make it easier to use sensors that require pullup resistors as well as making available multiple ground and 5V Vref connections. The built-in pullup resistors are easily disabled by breaking a designated trace on the board. This board is compact; enough to be bundled inline with your wiring harness. SensorX board.png


Hardware Expansion board <coming soon> look for it to fit into the RJ-45 jack in the back of the RaceCapture Pro. It can be used to develop your own sensors, or hook in some of the cleverer concepts we've come up with!

Adapter Board <coming soon> look for it to fit into the GPIO pins on the green removable bus in the back of the RaceCapture Pro.